A quantum algorithm to approximate the linear structures of Boolean functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A quantum algorithm for approximating the influences of Boolean functions

We investigate the influences of variables on a Boolean function f based on the quantum BernsteinVazirani algorithm. A previous paper has proved that if a n-variable Boolean function f(x1, · · · , xn) does not depend on an input variable xi, using the Bernstein-Vazirani circuit to f will always obtain an output y that has a 0 in the ith position. We generalize this result and show that after se...

متن کامل

Quantum algorithm to distinguish Boolean functions of different weights

By the weight of a Boolean function f , denoted by wt(f), we mean the number of inputs for which f outputs 1. Given a promise that an n-variable Boolean function (available in the form of a black box and the output is available in constant time once the input is supplied) is of weight either wN or (1−w)N (0 < w < 1, N = 2), we present a detailed study of quantum algorithms to find out which one...

متن کامل

Exact quantum algorithm to distinguish Boolean functions of different weights

Abstract In this work, we exploit the Grover operator for the weight analysis of a Boolean function, specifically to solve the weight-decision problem. The weight w is the fraction of all possible inputs for which the output is 1. The goal of the weight-decision problem is to find the exact weight w from the given two weights w1 and w2 satisfying a general weight condition as w1 + w2 = 1 and 0 ...

متن کامل

Monotone Boolean formulas can approximate monotone linear threshold functions

We show that any monotone linear threshold function on n Boolean variables can be approximated to within any constant accuracy by a monotone Boolean formula of poly(n) size.

متن کامل

Investigating the linear structure of Boolean functions based on Simon's period-finding quantum algorithm

It is believed that there is no efficient classical algorithm to determine the linear structure of Boolean function. We investigate an extension of Simon’s period-finding quantum algorithm, and propose an efficient quantum algorithm to determine the linear structure of Boolean function.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Structures in Computer Science

سال: 2016

ISSN: 0960-1295,1469-8072

DOI: 10.1017/s0960129516000013